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Abstract 
Existing techniques for bypassing wired port security are limited to attacking 802.1x-2004, which does not provide 
encryption or the ability to perform authentication on a packet-by-packet basis [3][4][6]. The development of 802.1x-
2010 mitigates these issues by using MACsec to provide Layer 2 encryption and packet integrity checks to the 
protocol [7]. Since MACsec encrypts data on a hop-by-hop basis, it successfully protects against the hub, bridge, and 
injection-based attacks pioneered by Steve Riley, Abb, and Alva Duckwall [7][8]. 
 
In addition to the development of 802.1x-2010, improved 802.1x support by peripheral devices such as printers also 
poses a challenge to attackers. Gone are the days in which bypassing 802.1x was as simple as finding a printer and 
spoofing a MAC address – hardware manufacturers have gotten smarter. 
 
In this paper, we introduce the Rogue Gateway and Bait n Switch attacks, which together can be used to bypass 
802.1x-2010 and MACsec when weak EAP methods are used. Additionally, we introduce the EAP-MD5 Forced 
Reauthentication attack exploiting a weakness in the initiation of EAP authentication. We discuss how improved 
802.1x support by peripheral devices does not necessarily translate to improved port-security due to the widespread 
use of weak EAP. Finally, we consider how improvements to the Linux kernel ease implementation of bridge-based 
techniques and demonstrate an alternative to using packet injection and manipulation for network interaction.  
 
We packaged each of these techniques and improvements into an open source tool called silentbridge, which we 
plan on releasing alongside this paper. 
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I. Introduction 
In this paper, we provide a brief history of attacks against the 802.1x protocol, as well as descriptions of how the 
802.1x and EAP protocols work. We also describe some of the most commonly used EAP methods, highlighting any 
security issues. We also discuss the historical use of port security exceptions as an attack vector, noting that 
improved 802.1x support by peripheral devices is changing this. Finally, we discuss our improvements to the bridge-
based 802.1x bypass technique introduced by Alva Duckwall [4], along with three attacks that can be used against 
802.1x-2004 and 802.1x-2010 using weak forms of EAP. 

 II. Background and Prior Work 
Created in 2001, the original version of the 802.1x standard was designed to provide a rudimentary authentication 
mechanism for devices connecting to a local area network (LAN) [1]. Three years later, an extension of 802.1x named 
802.1x-2004 was released to facilitate the use of 802.1x on wireless networks [2]. 
 
In 2005, researcher Steve Riley discovered that 802.1x-2004 could be bypassed by inserting a hub between an 
authorized device and a switch [3]. The attacker could then attach a rogue device to the hub and sniff packets and 
inject UDP traffic onto the network. Injecting TCP traffic was not possible due to a race condition that resulted in 
dropped packets and possible detection [4]. 
 
In 2011, a researcher named "Abb" published a tool called Marvin that could be used to bypass 802.1x by introducing 
a rogue device configured as a bridge directly between an authorized device and the switch [5]. This allowed an 
attacker to eavesdrop on network traffic without the use of a hub. Later that year, researcher Alva Duckwall 
improved upon Abb's attack, using source NATing to achieve full network interaction without relying on packet 
injection [4]. In 2017, Valérian Legrand released a similar tool that featured a modular design written in Python [6]. 
 

II.1 MAC Filtering and MAC Authorization Bypass (MAB) 
When enterprise organizations using 802.1x need to deploy a device that does not support the protocol, they must 
either permanently or temporarily disable 802.1x on the port used by the device. Disabling 802.1x on a port and 
replacing it with a weaker form of access control, such as MAC filtering, introduces a “port-security policy exception.”  
 
Historically, these policy exceptions were prevalent due to widespread lack of 802.1x support by peripheral devices 
such multifunction printers and IP cameras. Consequently, attackers typically first looked for policy exceptions when 
attempting to bypass port security, particularly since the bridge-based techniques described in II. Background and 
Prior Work and IV. Improvements to Classical Bridge-based 802.1x Bypass required considerably more effort. To 
bypass MAC filtering, the attacker merely located a device that does not use 802.1x, spoofed its MAC address, and 
connected to the device’s switch port. 
 

II.2 The Current State of Wired Port Security 
The largest enterprise networking hardware manufacturers now offer switches that supports 802.1x-2010. This new 
version of the 802.1x protocol uses MACsec to implement hop-by-hop Layer 2 encryption along with packet-by-
packet integrity checks. These additional security features defeat the bridge-based attacks we described in II. 
Background and Prior Work and IV. Improvements to Classical Bridge-based 802.1x Bypass [7]. However, adoption 
rates for 802.1x itself remain relatively low, and adoption rates for newer additions to the standard such as 802.1x-
2010 are even lower. Regardless, attackers should expect to see increased 802.1x-2010 adoption in the near future, 
giving rise to a need to develop a method to cope with it.  
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In addition to the development of 802.1x-2010 and MACsec, improvements in peripheral device security increase 
the challenges in bypassing wired port security by looking for policy exceptions. At this point, most printer 
manufacturers offer at least one affordable model supporting 802.1x. As enterprise organizations continue to phase 
out legacy hardware, they continue to deploy more 802.1x capable peripheral devices into their network 
environments. This, in turn, decreases the frequency of port security exceptions, reducing the existence of what was 
once considered low-hanging-fruit for attackers. 
 
In the remainder of this paper, we demonstrate our efforts to address both the introduction of MACsec and 
increased 802.1x support by peripheral devices. We begin by introducing improvements to Duckwall’s bridge-based 
attacks against 802.1x-2004. We then introduce techniques to bypass 802.1x-2010 when implemented using weak 
forms of EAP. Finally, we discuss strategies and techniques to compensate for improvements in peripheral devices. 
 

II.3 802.1x Overview 
The 802.1x protocol is an authentication framework used to allow or deny access to devices wishing to connect to 
a local area network (LAN) (either wired or wireless) [1][2][9]. The protocol defines an exchange between the 
following three parties: 
 

§ supplicant – the client device wishing to connect the LAN [1][2][9]. 
 

§ authenticator – a network device such as a switch providing access to the LAN [1][2][9]. 
 

§ authentication server – a host that runs software implementing RADIUS or some other Authorization, 
Authentication, and Accounting (AAA) protocol. Usually the authentication server is a standalone system, 
although it can be built into the same hardware as the authenticator [1][2][9]. 

 
 

 
Figure 1 – The EAP authentication process is encapsulated by EAPOL between the supplicant and authenticator, and by RADIUS 
between the authenticator and authentication server. 

The authenticator can be thought of as a gatekeeper that guards access to the LAN. When the supplicant connects 
to a switch port, it must provide the authenticator with a set of credentials [1][2][9]. The authenticator forwards 
these credentials to the authentication server, which verifies that the credentials are valid. If the credentials are 
valid, the authentication server instructs the authenticator to allow the supplicant to access the network. Otherwise, 
the supplicant is denied access to the network [1][2][9]. 
 
The 802.1x authentication process typically follows a four-step sequence: 
 

1. Initialization – the supplicant connects to a port on the switch (authenticator). At this time, the switch port 
is currently disabled. The authenticator detects this new connection and enables the port, but only allows 
802.1x traffic to be transmitted. When in this restricted state, the port is “unauthorized” 
 [1][2][9]. 
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2. Initiation – either the supplicant or the authenticator can initiate the 802.1x authentication process. In 

some implementations of 802.1x, the authenticator periodically sends out EAP-Request-Identity frames 
that prompt the supplicant to begin authenticating [1][2][9]. Alternatively, the authenticator can wait for 
the supplicant to send an EAPOL-Start frame, to which it will respond with an EAP-Request-Identity frame. 
In either case, the supplicant replies with an EAP-Response-Identity frame containing an identifier (such as 
a username). The supplicant receives this frame, encapsulates it in a RADIUS Access-Request frame, and 
forwards the frame to the authentication server [1][2][9]. 

 
3. EAP Negotiation – The authentication server responds with an EAP-Request frame encapsulated within a 

RADIUS Access-Challenge. The authenticator strips the RADIUS Access-Challenge frame from this response, 
and sends the resulting EAP-Request frame to the supplicant [1][2][9]. The EAP-Request frame specifies an 
EAP method that the supplicant should use to continue the authentication process. The supplicant either 
begins the EAP authentication process using the recommended EAP method, or responds with a Negative 
Acknowledgement (NAK) that includes a list of acceptable methods. [1][2][9] 

 
4. Authentication – Once the supplicant and authentication server agree on an EAP method, the 

authentication process begins. The specific details of how the authentication process should proceed 
depends on the EAP method selected [1][2][9]. No matter what EAP method is used, the authentication 
process will result in an EAP-Success or EAP-Failure message. In the event of a successful authentication, 
the port is set to an “authorized state”, in which normal traffic is allowed. Otherwise, the port remains in 
an “unauthorized” state [1][2][9]. 

 

II.4 Notable EAP Methods 
There are many ways to implement EAP [16]. These different EAP implementations are known as EAP methods [16]. 
In this section, we review some of the most commonly used EAP methods direct relevant to the material covered in 
this paper. 
 
II.4.A EAP-MD5 

The EAP-MD5 authentication process begins when the authentication server sends an EAP-Request-Identity to the 
supplicant [16]. The supplicant responds with an EAP-Response-Identity, causing the authentication server to create 
a randomly generated challenge string. The authentication server sends this challenge string to the supplicant as an 
MD5-Challenge-Request [16]. The supplicant then concatenates its username, plaintext password, and the challenge 
string into a single value, and sends the MD5 hash of this value to the authentication server as the MD5-Challenge-
Response. Upon receiving the MD5-Challenge-Response, the authentication server repeats the hashing process 
performed by the supplicant: the authentication server concatenates the username, password, and challenge string 
into a single value which is input into the MD5 hashing function. This second MD5 hash (created by the 
authentication server) is compared against the MD5-Challenge-Response (created by the supplicant). If the two 
hashes are identical, the authentication attempt succeeds. Otherwise, it fails [16]. 
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Figure 2 – the EAP-MD5 authentication process 

This authentication method, when used alone, is not protected by encryption. As described by Josh Wright and Brad 
Antoniewicz in their presentation at Schmoocon 2008, an attacker sniffing traffic between the supplicant and the 
authenticator can capture both the MD5-Challenge-Request and MD5-Challenge-Response [13]. Wright and 
Antoniewicz describe a dictionary attack to calculate the plaintext password, as illustrated in Figure 3 below [13]. 
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Figure 3 – Wright’s and Antoniewicz’s dictionary attack against EAP-MD5, expressed as an algorithmic flowchart 

Further work by Fanbao Liu and Tao Xie of the National University of Defense Technology in Changsha, China reveals  
an even more efficient EAP-MD5 cracking technique that uses a length-recovery attack [19]. 
 
II.4.B EAP-PEAP / EAP-TTLS 

The authentication process consists of two phases: outer authentication and inner authentication. Outer 
authentication comes first, and begins when the supplicant makes an authentication request to the authentication 
server via the authenticator [21][29][30]. The authenticator then attempts to prove its identity to the supplicant by 
responding with an x.509 certificate. If the supplicant accepts the authentication server’s certificate, outer 
authentication succeeds and a secure tunnel is established between the authentication server and supplicant 
[21][29][30]. We then transition to the inner authentication process through the secure tunnel. The use of a secure 
tunnel to protect the inner authentication process was developed largely in response to the weaknesses that affect 
unprotected EAP methods such as EAP-MD5. 
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Much like EAP itself, there are many different protocols available for use during the inner authentication process 
[21][29][30]. However, MS-CHAPv2 is the most commonly used authentication protocol for this purpose. 
 

 
Figure 4 – The EAP-PEAP authentication process 

This system is problematic.  Although mutual authentication can be enforced using inner-authentication mechanisms 
such as MS-CHAPv2, the x.509 certificate is the only means through which the supplicant can verify the identity of 
the authentication server. Absent a guarantee that the supplicant will always reject invalid certificates, the onus is 
placed on the supplicant (and therefore the user, in many cases) to reject invalid certificates received by the 
authentication server [13][20]. 
 
Remember that EAP is not only used for wired authentication as specified by 802.1x, but for wireless authentication 
in conjunction with WPA2 [21]. It was this inability to validate the identity of the authentication server that lead to 
the classic attack against WPA2-EAP wireless networks presented by Brad Antoniewicz and Joshua Wright at 
Schmoocon in 2008 [13]. When WPA2-EAP is implemented using weak EAP methods such as EAP-PEAP and EAP-
TTLS, an attacker can use a rogue access point attack to force the supplicant to authenticate with a rogue 
authentication server [13][21]. So long as the supplicant accepts the certificate presented by the attacker’s 
authentication server, the supplicant will transmit an EAP challenge and response to the attacker that can be cracked 
to obtain a plaintext username and password [13][21]. 
 
Further increasing the severity of this issue, MS-CHAPv2 is the strongest Inner Authentication protocol available for 
use with EAP-PEAP and EAP-TTLS. MS-CHAPv2 itself is vulnerable to a cryptographic weakness, first discovered by 
Moxie Marlinspike and David Hulton in 2012, that allows an attacker to reduce the captured MS-CHAPv2 challenge 
and response hashes to a single round of DES encryption, which is a mere 56-bits in length [22][23].  These 56-bits 
are weak enough that they can converted into a password-equivalent NT hash within 24 hours with a 100% success 
rate using FPGA-based hardware [22][23]. 
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Although the feasibility of similar attacks against wired port security have yet to be explored, this paper 
demonstrates that such attacks are pivotal in allowing us to bypass 802.1x-2010.  
 
II.4.C EAP-TLS 

In 2008, EAP-TLS was introduced by RFC 5216, largely as a mitigation to the aforementioned security issues affecting 
weak EAP methods such as EAP-PEAP and EAP-TTLS [24]. The strength of EAP-TLS lies in its use of mutual certificate-
based authentication during the outer authentication process, preventing attackers from performing the kinds of 
man-in-the-middle attacks that can be used to attack weaker EAP implementations [24]. Unfortunately, the 
inconvenience of installing a client certificate on all supplicant devices reduced the overall adoption rate of this 
technology [25]. 

III. Research Environment and Architecture 
Our lab environment consisted of the following core components: 
 

§ Simulated Network Environment – the test network against which we performed our attacks. 
 

§ Rogue Device A – a rogue device configured to use a bridged-based approach for performing 802.1x 
bypasses. 

 
§ Rogue Device B – a rogue device equipped with remotely controllable mechanical A/B ethernet splitters. 

 
In the remainder of this paper, we often talk about attacks requiring either a Rogue Device A or Rogue Device B 
configuration. When we say this, we mean that the attack assumes that the rogue device is configured according to 
the following descriptions. 
 

III.1 Simulated Network Environment 
Our simulated network environment emulates an enterprise internal network protected by 802.1x authentication. 
 

 
Figure 5 – the simulated network environment 



   
 

Page 14 of 39 

As shown in Figure 5, the simulated network environment uses the following components: 
 

§ Supplicant: a MACsec capable Linux workstation running Fedora 28 equipped with NetworkManager and 
wpa_supplicant, configured to connect and authenticate automatically with the network. 

 
§ Authenticator: a MACsec capable Cisco Catalyst 3560-CX switch configured as follows: 

 
o GigabitEthernet 0/1 interface – provides an upstream link to the network gateway 
o GitabitEthernet 0/2 interface – provides administrative access to the switch 
o GigabitEthernet 0/3 interface – provides a connection to the external RADIUS server 
o GigabitEthernet 0/5 interface – standard 802.1x protected port 
o GigabitEthernet 0/6 interface – 802.1x protected port with MACsec 

 
§ Authentication Server (RADIUS) – we used a Raspberry Pi running Freeradius 3.017 as an authentication 

server for use with the switch.  
 
 

 
Figure 6 – objective: introducing a rogue device between the authenticator and supplicant 

The goal of this experiment was to successfully bypass multiple variations of 802.1x by introducing a rogue device to 
the network, either by placing it as a bridge between the supplicant and authenticator (see Figure 6 above) or by 
connecting it directly to the authenticator itself (see Figure 7 below). 
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Figure 7 – objective: introducing a rogue device directly to the authenticator 

To do this, we constructed two rogue devices: one intended for purely bridge-based bypass methods and the other 
for mechanically assisted bypass methods. 
 

III.2 Rogue Device A: Pure Bridge-based Design 
Rogue Device A followed a pure bridge-based design, as shown in Figure 8 below. More details about the side 
channel and transparent bridge can be found in III.4 Establishing a Side Channel and IV. Improvements to Classical 
Bridge-based 802.1x Bypass. 
 
 

 
Figure 8 – Rogue Device A 

The device consisted of an Intel NUC micro-computer running Fedora 28 and equipped with the following network 
interface cards: 
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§ upstream – the upstream interface to connect the rogue device with the authenticator (or switch). We used 

a single Ugreen USB 2.0 to RJ45 Network Adapter for this purpose. 
 

§ PHY – the PHY interface to connect the rogue device with the authenticator (or switch). We used a single 
Ugreen USB 2.0 to RJ45 Network Adapter for this purpose. 

 
§ sidechannel – the sidechannel interface consisted of a single USB LTE modem used to provide a backdoor 

into the device. 
 
Additionally, the device was equipped with the silentbridge software we wrote as part of this research project. 
 

III.3 Rogue Device B: Mechanically Assisted Bypass 
Rogue Device B builds off the design of Rogue Device A, keeping all of the key design elements of the first device 
while adding two physical A/B Ethernet splitters that can be used to bypass the device entirely. When the splitters 
are in position A, they connect directly to each another using an ethernet patch cable. This causes the device acts as 
an ethernet extender, bypassing the network interfaces of the rogue device entirely. Additionally, we can silently 
inspect traffic while rogue device is in mode A using a passive Ethernet tap placed directly in line with the patch 
cable as shown in the diagram below [32][33]. The Ethernet tap has two monitoring ports so that traffic can be 
captured from either direction [32][33]. The monitoring ports are receive-only, making it impossible for traffic from 
the rogue device’s monitoring interfaces to spill onto the network [32][33]. 
 

 
Figure 9 – Rogue Device B 

When the splitters are in position B, ethernet traffic passes directly to the upstream and PHY interfaces of the rogue 
device. Specifically, placing both splitters in position B connects the upstream interface to the authenticator, and 
connects the PHY interface to the supplicant. 
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Figure 10 – Rogue Device B 

Both A/B splitters can be operated independently of one another. To implement this functionality, we modified a 
pair of MT-VIKI FBA_MT-RJ45-2M RJ-45 ethernet splitters to each be controlled by a pair of 12mm, 24V solenoids. 
The solenoids were controlled by an Arduino compatible microcontroller connected to the rogue device over serial 
connection. 
 
We recognize that this may not be the most efficient way of controlling the device, but designing an Ethernet relay 
free of impedance issues was beyond the scope of this research. 
 

III.4 Establishing a Side Channel 
Establishing a side channel to remotely access the device is required to perform the Rogue Gateway and Bait n Switch 
attacks we describe, and gives us a way of controlling the rogue device even when it is not connected to the target 
network. 
 
We equipped both rogue devices with Linux-compatible LTE modems configured to obtain an IP address on boot. 
We then configured the devices to allow remote access through the LTE modem using a reverse SSH tunnel to an 
SSH redirector, as shown in Figure 11 below. 
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Figure 11 – Establishing a side channel using a reverse SSH tunnel over LTE 

In this configuration, the rogue device initiates a reverse SSH tunnel from the sidechannel interface to the redirect 
on boot. The redirector then forwards incoming SSH connections through the reverse tunnel to the rogue device. 
We followed the configuration described by Stanislav Sinyagin in his blog posts Call Home SSH Scripts and Improved 
Call Home SSH Scripts [26][27].  
 

III.5 Putting It All Together 
The full lab setup is shown in the diagrams below. The first configuration uses Rogue Device A and is shown in Figure 
12 below.  
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Figure 12 – the complete lab environment (using Rogue Device A) 

The second configuration uses Rogue Device B and is shown in Figure 13 below. 
 

 
Figure 13 – the complete lab environment (using Rogue Device B) 
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IV. Improvements to Classical Bridge-based 802.1x Bypass  
One of the first steps we took in exploring this topic was attempting to recreate the classical bridge-based 802.1x 
developed by Alva Duckwall [4]. As we mentioned in II.2 The Current State of Wired Port Security, this attack uses a 
transparent bridge to silently introduce a rogue device between the authenticator and the supplicant [4]. The ability 
to interact with the network is granted by using iptables to source NAT (SNAT) traffic originating from the device [4]. 
To reduce risk of discovery, iptables is used to prevent the rogue device from using a source port that is already in 
use by the supplicant [4]. Additionally, a hidden SSH service is created on the rogue device by using iptables to 
forward traffic destined for the supplicant’s IP address on a specific port to the rogue device on port 22 [4].  
 
In this section we’ll discuss the improvements we made to this original attack, all of which were developed during 
the process of recreating it. 
 
Leveraging Native EAPOL Forwarding 
One of the most immediate drawbacks to the traditional bridge-based approach is that the Linux kernel will not 
forward EAPOL packets over the bridge, presumably for security reasons [4]. Existing tools for performing bridge-
based 802.1x bypasses deal with this problem in one of two ways: patching the Linux kernel, or using high-level 
libraries such as Scapy [4][6]. Relying on kernel patches can be unwieldy, and relying on high level scripting languages 
such as  Python can slow the bridge under heavy loads. To make matters worse, none of the publicly available kernel 
patches work with the latest versions of Linux [17][18]. 
 

 
Figure 14 – 802.1x forwarding can be enabled using the proc filesystem 

Fortunately, the situation has dramatically improved since Duckwall’s script was released: as of 2012, the Linux 
kernel no longer must be patched in order to bridge EAPOL packets [11]. Instead, users can enable this feature using 
the proc filesystem [11]. We updated our implementation of Duckwall’s classical 802.1x bypass to reflect this, 
ensuring long-lasting reliability regardless of the kernel version in use.  
 
Support For Side Channel Interaction 
Perhaps the most significant improvement we made to the classical 802.1x bypass was to add support for remote 
access via a side channel, as described in III.4 Establishing a Side Channel. In Duckwall’s classical 802.1x bypass, all 
outbound ARP and IP traffic is initially blocked while the transparent bridge is being initialized. 
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Figure 15 – The original 802.1x bypass by Duckwall, shown above, blocks all outbound ARP and IP traffic while the bridge is 

being initialized (script hosted by Mubix on Github.com) [18] 

Although these restrictions are eventually lifted when the transparent bridge setup is complete, they are still enough 
to cut off access through the side channel device, consequently causing loss of access to the rogue device. In order 
to maintain access to the device while the bridge is being initialized, we added a firewall exception that allows 
outbound traffic from our sidechannel interface only. 
 

 
Figure 16 – creating an exception for side channel traffic 

By default, our implementation allows outbound traffic to port 22 from the sidechannel interface, although we also 
provided users with the ability to specify an alternative port using a command line flag. 
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Figure 17 – specifying an alternative egress port 

Conclusion 
Our improved classical 802.1x bypass worked as expected when used against 802.1x-2004, and is implemented in 
our proof of concept silentbridge software. Screenshots and reproduction commands are shown below. For 
additional details, please refer to the source code release and associated documentation described in VIII. Proof of 
Concept and Source Code Release. 

 

 
Figure 18 – performing a bridge-based 802.1x bypass 

Reproduction Command (setting up transparent bridge): 
./silentbridge --create-bridge  --upstream eno1 --phy enp0s20f0u2 --sidechannel wlp58s0 
 
Reproduction Command (adding network interaction): 
./silentbridge --create-bridge  --upstream eno1 --phy enp0s20f0u2 --sidechannel wlp58s0 

V. Bate n Switch Attack: An Alternative To Packet Injection 
Traditional 802.1x bypass techniques tend to focus on ways of interacting with a protected wired network without 
actually authenticating. Although this can be accomplished using packet injection when the protected network uses 
802.1x-2004 or earlier, a simpler approach is sometimes better. One situation in which this is particularly true is 
when 802.1.x-2010 is used to protect the wired network, as MACsec effectively denies us the opportunity to use 
packet injection. 
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The Bait N Switch attack is a means of using stolen credentials to authenticate directly to a protected wired network 
without tripping port security. This allows the attacker to interact with the network without relying on packet 
injection. 
 

V.1 Bridge-Based Approach 
In the first variation of the Bait n Switch attack, we use the Rogue Device A configuration described in III.2 Rogue 
Device A: Pure Bridge-based Design. We begin the attack by performing the Classical Bridge-based 802.1x bypass 
described in IV. Improvements to Classical Bridge-based 802.1x Bypass, using the rogue device to establish a 
transparent bridge between the supplicant and authenticator as shown in Figure 20 below. 
 

 
Figure 19 – establishing a bridge-based 802.1x bypass in preparation for a Bait n Switch attack 

We then use the bridge-based bypass to sniff traffic flowing between the supplicant and authenticator, gathering 
the following data points: 
 

§ Default gateway’s IP address 
§ Supplicant’s MAC address 
§ Supplicant’s IP address 

 
We then disconnect the supplicant from the network by bringing our PHY and bridge interfaces down. Next, we set 
the MAC address of our upstream interface to the MAC address of the supplicant and use the upstream interface to 
authenticate with the authenticator using stolen RADIUS credentials. Finally, we give our upstream interface a static 
IP address that matches the one previously assigned to the client device.  
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Figure 20 – performing a Bait n Switch attack 

In essence, the Bait n Switch attack silently swaps the authorized device with the attacker’s rogue device. The attack 
is simple, can be used to achieve full network interaction, and is reasonably stealthy so long as performed during 
off-hours when the affected supplicant is unlikely to be in use. 
 

V.2 Using Mechanical A/B Splitters 
Using the Rogue Device B configuration described in III.3 Rogue Device B: Mechanically Assisted Bypass, we can use 
the Bait n Switch attack to authenticate with networks protected by 802.1x-2010 and MACsec. When combined with 
the Rogue Gateway Attack described in VI. Defeating MACsec Using Rogue Gateway Attacks, this technique can 
bypass 802.1x-2010 in cases where weak EAP implementations are used. 
 
To begin the attack, we first introduce our rogue device to the network as shown in Figure 22 below. As we do this, 
we make sure that both A/B splitters are in position A, which preserves the direct physical link between the 
authenticator and supplicant.  
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Figure 21 – preparing to perform Bait n Switch using Rogue Device B configuration 

We then use our passive Ethernet tap to sniff traffic flowing between the supplicant and authenticator, gathering 
the following data points: 
 

§ Default gateway’s IP address 
§ Supplicant’s MAC address 
§ Supplicant’s IP address 

 
We then disconnect the supplicant from the network by bringing our PHY and bridge interfaces down and placing 
the splitters in the B position, which reroutes the physical link to the rogue device. Next, we set the MAC address of 
our upstream interface to the MAC address of the supplicant and use it to authenticate with the authenticator using 
stolen RADIUS credentials. Finally, we give our upstream interface a static IP address that matches the one previously 
assigned to the supplicant.  

 
Figure 22 – performing the Bait n Switch using Rogue Device B configuration 
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Conclusion 
The Bait n Switch attack is implemented in our proof of concept silentbridge software. Reproduction commands 
are shown below. For additional details, please refer to the source code release and associated documentation 
described in VIII. Proof of Concept and Source Code Release. 

 
Reproduction Command (bridge-based Bait n Switch): 
./silentbridge --bait-n-switch --upstream eno1 --gw-ip 192.168.1.1 --client-mac 38:60:77:d0:ef:0b --phy enp0s20f0u2 --netmask 255.255.255.0 --client-ip 192.168.1.93 --wired-conf 
wired.conf 
 
Reproduction Command (mechanically assisted Bait n Switch): 
./silentbridge --bait-n-switch --upstream eno1 --gw-ip 192.168.1.1 --client-mac 38:60:77:d0:ef:0b --phy enp0s20f0u2 --netmask 255.255.255.0 --client-ip 192.168.1.93 --wired-conf 
wired.conf --use-splitters 

 VI. Defeating MACsec Using Rogue Gateway Attacks 
The 802.1x bypass techniques pioneered by Riley, “Abb,” Duckwall, and later improved upon by Legrand all take 
advantage of the same fundamental security issues that affect 802.1x-2004: the standard does not provide 
encryption or the ability to perform authentication on a packet-by-packet basis [3][4][6][7]. 
 
To address these issues, the IEEE developed a new standard, 802.1x-2010, which uses MACsec to provide Layer 2 
encryption and packet-by-packet integrity checks [7]. MACsec provides encryption on a hop-by-hop basis, which 
successfully mitigates the bridge-based attacks that we discussed in II. Background and Prior Work and IV. 
Improvements to Classical Bridge-based 802.1x Bypass while also providing network administrators with a means to 
inspect data in transit [7][8]. 
 
MACsec and 802.1x-2010 work in three phases: authentication and master key distribution, session key agreement, 
and session secure [7][8][9]. Authentication is intended to be performed using EAP, although 802.1x-2010 allows for 
a Pre-Shared Key (PSK) to be used as well, either as a fallback or as a direct replacement for EAP. 
 

 
Figure 23 

When EAP is used as the authentication mechanism, the entire process is reminiscent of WPA2-EAP, in that it 
involves a supplicant (client device), authenticator (switch), and authentication server. When a device is first 
connected to a protected switch port, the authenticator initiates the EAP authentication process by sending an EAP-
Request-Identity frame to the supplicant [7][8][9]. The supplicant then responds with its identity, which is forwarded 
by the authenticator to the authentication server as a RADIUS Access-Request message.  
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Figure 24 

At this point, the supplicant and authentication server negotiate an EAP type that supports Master Session Key (MSK) 
derivation, and the supplicant attempts to authenticate using the agreed-upon EAP type [7][8][9]. If authentication 
succeeds, the supplicant and switch perform the session key agreement and then enter the Session Secure state, 
where MACsec’s Layer 2 encryption becomes active. 

 
Figure 25 

With a couple of exceptions, which we will examine shortly, the hop-by-hop encryption provided by MACsec 
prevents attackers from bypassing 802.1x-2010 by bridging two network interfaces together as is possible with 
802.1x-2004 [10]. Possible exceptions are provider bridges (PBs) and backbone bridges (PBBs), which warrant further 
investigation despite being outside the scope of this discussion [10]. However, it is possible for an attacker to 
introduce a rogue device to a network protected by 802.1x-2010 using more rudimentary methods. 
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VI.1 Defeating MACsec Using Rogue Gateway Attacks 
Significantly, 802.1x-2010 still uses EAP to authenticate new devices to the network [7]. As we described briefly in II. 
Background and Prior Work, there are many ways of implementing EAP, and most of them suffer from some sort of 
security issue. The 802.1x-2010 standard allows any EAP method so long as it meets the following mandatory 
requirements: 
 

§ Supports mutual authentication between client and server 
§ Supports derivation of keys that are at least 128 bits in length 
§ Generates an MSK of at least 64 octets 

 
Most of the commonly seen weak EAP methods, including EAP-PEAP and EAP-TTLS, meet these requirements. It is 
up to individual vendors to decide whether or not these methods should be supported, and up to system 
administrators to choose EAP methods that can withstand man-in-the-middle attacks. 
 
The implication of support for weak EAP methods is that security of 802.1x-2010 deployments are still only strong 
as the EAP methods used. Unless the target deploys strong forms of EAP such as EAP-TLS or EAP-PEAP with globally 
enforced rejection of invalid certificates, an attacker can simply repurpose existing principles for attacking these 
authentication protocols as a means of bypassing port security. 
 
Consider a scenario in which EAP-TTLS provides authentication to a network secured using 802.1x-2010. The attacker 
could introduce a Rogue Device B between the supplicant and authenticator as shown in Figure 27 below. 
 

 
Figure 26 

As described in III.3 Rogue Device B: Mechanically Assisted Bypass, this rogue device configuration makes use of two 
mechanically controlled A/B ethernet splitters: when the splitters are in the “A” position, the supplicant is allowed 
to communicate directly with the authenticator as shown in Figure 27 above. The attacker begins by using the 
device’s passive Ethernet tap to sniff the following information: 
 

§ Supplicant’s MAC address 
§ Authenticator’s MAC address 
§ The default gateway’s IP address 
§ The subnet’s netmask 
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The attack is then initiated by bringing the upstream interface down and flipping the splitters to the “B” position as 
shown in Figure 28 below. This provides direct connectivity between the rogue device and the supplicant. The 
attacker then starts hostapd as a rogue RADIUS server, configuring it to listen on the rogue device’s PHY interface. 
 
 

 
Figure 27 

The attacker then sends a spoofed EAPOL-Start frame to hostapd, causing hostapd to send an EAP-Request-Identity 
frame to the supplicant. In response, the supplicant attempts to authenticate with the rogue device. As long as the 
supplicant accepts the rogue device’s x.509 certificate, the attacker will capture an MS-CHAPv2 challenge and 
response from the supplicant which can be cracked to obtain plaintext credentials [13]. 
 
Once the attacker cracks the captured hashes, a Bait n Switch attack connects the rogue device to the network as 
shown in Figure 29 below. 
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Figure 28 

 

Conclusion 
The Rogue Gateway attack is implemented in our proof of concept silentbridge software. Screenshots and 
reproduction commands are shown below. For additional details, please refer to the source code release and 
associated documentation described in VIII. Proof of Concept and Source Code Release. 

 

 
Figure 30 – performing a Rogue Gateway Attack 

Reproduction Command (Rogue Gateway Attack against 802.1x-2010): 
./silentbridge --rogue-gateway --upstream eno1 --client-mac 38:60:77:d0:ef:0b --phy enp0s20f0u2 --switch-mac 00:42:5a:87:57:85 --netmask 255.255.255.0 --gw-ip 192.168.1.1 -
-use-splitters 
 

VII. Dealing with Improvements to Peripheral Device Security  
Previously, we described how improved 802.1x support by peripheral devices such as multifunction printers has 
made it increasingly difficult to bypass wired port security by looking for policy exceptions. While improved adoption 
of 802.1x is a step in the right direction, it does not necessarily translate to strong port security for peripheral devices. 
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802.1x authentication relies upon EAP, and most forms of EAP have known security issues that have existed for over 
a decade [13]. 
 
Adoption rates for secure forms of EAP, such as EAP-TLS or EAP-PEAP with forced rejection of untrusted certificates, 
are relatively poor due to the complexity involved with deploying these technologies at scale [12]. For peripheral 
devices such as printers, the adoption of secure EAP is even worse, considering that very few cost-effective 
peripheral devices can be configured using Group Policy. 
 
Thus, while port-security exceptions for peripheral devices may not be as prevalent as they used to be, peripheral 
devices themselves are still highly viable entry points because they are less likely to be configured using strong forms 
of EAP. What is missing are techniques for attacking weak forms of EAP within a wired network.  
 
In this section, we introduce two attacks against EAP-MD5 and EAP-PEAP on wired networks, since these are the two 
forms of weak EAP most commonly used by peripheral devices and even some workstations. These attacks allow us 
to continue to use peripheral devices as entry points to networks protected by 802.1x-2004. 
 

VII.1 EAP-MD5 Forced Reauthentication Attack 
EAP-MD5 is one of the most widely used forms of EAP used to protect peripheral devices such as multifunction 
printers and cheap IP phones. Despite its many flaws, it is one of the easiest forms of EAP to setup and configure, 
which makes it particularly well suited for this purpose. 
 
VII.1.A Passive Attack Against EAP-MD5 

Consider how we can use the existing attacks against EAP-MD5 described in II.4.A EAP-MD5 in conjunction with the 
classical 802.1x bypass described in II. Background and Prior Work and IV. Improvements to Classical Bridge-based 
802.1x Bypass to attack peripheral devices. We can use bridges and MAC spoofing to place a rogue device between 
the supplicant and the authenticator, and use the rogue device to sniff EAPOL packets as the supplicant 
authenticates with the network. We also have proposed the Bait n Switch method described in V. Bate n Switch 
Attack: An Alternative To Packet Injection as a means of authenticating with a network protected by 80.1x.  
 
Using these attacks allows us to bypass  802.1x by locating a peripheral device (supplicant) that is configured to use 
EAP-MD5, installing a rogue device between the supplicant and the switch (authenticator), and waiting for the 
peripheral device to reauthenticate with the network. We then can sniff the EAP-MD5 challenge and response, use 
a dictionary attack to obtain the plaintext username and password, and finish by using a Bait n Switch attack to 
authenticate with the network. 
 
There is one major drawback to this approach: we must wait for the supplicant to reauthenticate with the switch. 
Realistically, this will not occur unless the device is unplugged, turned off, or becomes inactive for an extended 
period of time [16].  
 
For our attack to be truly useful, we need to be able to force the device to reauthenticate. The most obvious way of 
doing this is to briefly disconnect the supplicant from the authenticator. However, for this to work we would have 
to physically disconnect the Ethernet cable from the bridge, as merely disabling a network interface briefly will not 
trigger reauthentication [16]. We can do this remotely if we’re using the Rogue Device B configuration for our rogue 
device, but it would be better to have a solution that can be implemented using Rogue Device A, which has less 
overhead. 
 
A better approach is to perform an attack that takes advantage of the way the EAP authentication process is initiated. 
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VII.1.B EAP-MD5 Forced Reauthentication Attack 

The first two steps of the EAP authentication process are: 
 

Step 1 – (optional) The supplicant sends the authenticator an EAPOL-Start frame [1][2][9]. 
Step 2 – The authenticator sends the supplicant an EAP-Request-Identity [1][2][9]. 
 

In order to provide a means for the authenticator to force the supplicant to reauthenticate, Step 1 is considered 
optional. EAP authentication can be initiated using Step 1 (EAPOL-Start) or Step 2 (EAP-Request-Identity) [1][2][9]. 
 
This approach, however, fails to provide the  supplicant a means of verifying whether incoming EAP-Request-Identity 
frames have been sent in response to an EAPOL-Start frame, or whether reauthentication has been initiated 
independently by the authenticator itself. Regardless of whether the authentication process starts at Step 1 or Step 
2, the structure of the EAP-Request-Identity frame remains the same. 
 
This means that we can force reauthentication by sending a forged EAPOL-start frame to the authenticator as if it 
came from the supplicant. This will cause the authenticator to believe that the supplicant is initiating authentication, 
which will cause the authenticator to send the supplicant an EAP-Request-Identity frame. The supplicant then 
receives the EAP-Request-Identity frame from the authenticator and responds with the next phase of the 
authentication process. The authentication process then proceeds as normal, as both the supplicant and the 
authenticator believe that the other party has initiated the transaction. 
 

 
Figure 31 – using Scapy to send EAPOL-Start frames 

Using this technique, we can upgrade our Passive Attack Against EAP-MD5 (see VII.1.A Passive Attack Against EAP-
MD5) into an active one. We begin by introducing the rogue device to the network between the authenticator and 
supplicant, establishing a transparent bridge to passively sniff traffic. We then force reauthentication, sniffing the 
resulting EAP-MD5 challenge and response. We then use a dictionary attack to obtain plaintext credentials and 
connect to the network using a Bait n Switch. 
 
VII.1.C Proposed Mitigation to EAP Forced Reauthentication Attacks 

A safer way of initiating the EAP authentication process would be to include a safety-bit in the EAP-Request-Identity 
frame that is set to 1 when the frame was sent in response to an EAPOL-Start frame. When the supplicant receives 
an EAP-Request-Identity frame, it should check the value of the safety-bit. If the safety-bit is set to 1, and the 
supplicant did not recently issue an EAPOL-Start frame, the authentication process should be aborted and an alert 
sent to the authenticator. 
 
Screen_Shot_2018-07-27_at_9_18_18_AM-redacted 
 

VII.2 Leveraging Rogue Gateway Attacks Against Peripheral Devices 
The other forms of weak EAP commonly used by peripheral devices on wired networks are EAP-PEAP and EAP-TTLS, 
discussed earlier in II.4.A EAP-MD5 and II.4.B EAP-PEAP / EAP-TTLS. Attacking EAP-PEAP is considerably more 
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involved than attacking EAP-MD5 since authentication occurs through a secure tunnel and consequently cannot be 
passively sniffed [13]. 
 
Fortunately, an adaptation of the rogue gateway technique discussed in VI. Defeating MACsec Using Rogue Gateway 
Attacks is useful in this scenario. This time, however, we do not need to use the Rogue Device B configuration since 
we are not dealing with a scenario involving MACsec. Instead, we can perform the attack completely in software 
using our transparent bridge as described in IV. Improvements to Classical Bridge-based 802.1x Bypass. 
 
VII.2.A Rogue Gateway Attack Against 802.1x-2004 and EAP-PEAP/EAP-TTLS 

We begin by placing our rogue device (A configuration) between the supplicant and authenticator as shown in Figure 
32 below. 
 

 
Figure 32 

Once we establish that the supplicant is configured to use EAP-PEAP, EAP-TTLS, or any similarly weak EAP 
implementation that does not enforce mutual certificate-based validation, we bring down our bridge and upstream 
network interfaces, as shown in Figure 33 below. We then start hostapd as a rogue RADIUS server and have it listen 
our PHY network interface. 
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Figure 33 

We then send a spoofed EAPOL-start frame to hostapd, causing hostapd to send an EAP-Request-Identity frame to 
the supplicant (see: VII.1 EAP-MD5 Forced Reauthentication Attack). 
 
This causes the supplicant to authenticate with the rogue device. As long as the authorized client accepts the rogue 
device’s x.509 certificate, the attacker will succeed in capturing an MS-CHAPv2 challenge and response which can 
be used to obtain plaintext credentials. 
 
Finally, we connect the rogue device to the network using a Bait n Switch. 
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Figure 34 

 

Conclusion 
The EAP-MD5 Forced Reauthentication and Rogue Gateway attacks are implemented in our proof of concept 
silentbridge software. Screenshots and reproduction commands are shown below. For additional details, please 
refer to the source code release and associated documentation described in VIII. Proof of Concept and Source 
Code Release. 

 

 
Figure 35 – performing an EAP-MD5 Forced Reauthentication Attack 

Reproduction Command (EAP-MD5 Forced Reauthentication Attack): 
./silentbridge –analyze-auth --upstream eno1 --client-mac 38:60:77:d0:ef:0b 
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VIII. Proof of Concept and Source Code Release 
We have packaged each of the attacks described in this document into a tool called silentbridge, which can be 
downloaded at the following URL: 
 

§ https://github.com/s0lst1c3/silentbridge 
 
The silentbridge repository contains both source code and documentation that describes how to build each of the 
rogue devices described in this paper. 
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Conclusion 
While 802.1x-2010 is a remarkable improvement over 802.1x-2004, weak authentication protocols can undermine 
the enhancements provided by MACsec. Even though 802.1x-2010’s use of MACsec successfully prevents the bridge 
and injection-based attacks introduced by “Abb” and Alva Duckwall, the protocol’s reliance on EAP means that the 
standard is only as secure as the EAP methods deployed.  This is demonstrated by the effectiveness of the Rogue 
Gateway and Bait n Switch attacks introduced in this document. 
 
If parallels between MACsec and WPA2 are any indication, we can expect the use of weak EAP implementations to 
become more and more prevalent as adoption rates for 802.1x-2010 increase. This is especially true considering that 
the 802.1x-2010 standard does not mandate the use of strong EAP methods. 
 
Additionally, although improved 802.1x support by peripheral device manufacturers is a step in the right direction, 
it is not enough. We need to incentivize device manufacturers to create products that both support strong EAP 
implementations and make it easy for organizations to deploy them. Until then, peripheral devices will largely be 
susceptible to the Rogue Gateway, Bait n Switch, and EAP-MD5 Forced Reauthentication attacks introduced in this 
document. Furthermore, these devices will remain susceptible to the bridge and injection based 802.1x bypasses 
introduced by Duckwall and “Abb” until both adoption of and support for 802.1x-2010 becomes widespread. 
 
Finally, it is important to recognize that while the use of 802.1x port security should still be considered an industry 
best-practice, it is not a substitute for a layered approach to network security. The use of 802.1x, or any other form 
of access control for that matter, should not be considered a mitigation for other host and network level security 
issues. Deploying 802.1x is not a substitute for good patch management practices, nor should it be used to justify 
the use of dangerous networking protocols such as LLMNR.  
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