Owning the LAN in 2018

Defeating MACsec and 802.1x-2010
DEF CON 26
Gabriel “solstice” Ryan

EEEEEEEEEEEEEE
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= Penetration testers who give a |@#$
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Introduction to 802.1x
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What is 802.1x?

= Authentication protocol

» Used to protect a local area network (LAN) or wireless
local area network (WLAN) with rudimentary authentication
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802.1.x defines an exchange between three parties:

= supplicant — the client device that wishes to connect to the
LAN

= authenticator — a network device such as a switch that
provides access to the LAN

= authentication server — a host that runs software that
implements RADIUS or some other Authorization, N
Authentication, and Accounting (AAA) protocol <@>
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RADIUS

—)
EAP (Encapsulated by RADIUS)

Authenticator Authentication Server

authenticator can be thought of as a gatekeeper

supplicant connects to a switch port and provides the authenticator
with its credentials

authenticator forwards credentials to the authentication server

denies access the network &
Vv
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Authentication server validates the credentials, and either allows or A
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802.1x is (typically) a four step sequence:

1. Initialization
2. Initiation

3. EAP Negotiation

4. Authentication
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Ports have two states:

= Authorized — traffic is unrestricted

= Unauthorized — traffic is restricted to 802.1x
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Step 1: Initialization

1. Supplicant connects to switch port, which is disabled

2. Authenticator detects new connection, enables switch port
In unauthorized state
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Step 2: Initiation
1. (optional) Supplicant sends EAPOL-Start frame [1][2][9]
2. Authenticator responds with EAP-Request-ldentity frame

3. Supplicant sends EAP-Response-ldentity frame (contains
an identifier such as a username)

4. Authenticator encapsulates EAP-Response-ldentity in a
RADIUS Access-Request frame and forwards it to A
Authentication Server <@>

EEEEEEEEEEEEEE



Step 3: EAP Negotiation

LA A

OME IlN,,GIIME IIN

Long story short:
supplicant and
authentication
server haggle until
they decideonan §

EAP method that - HAGGLE PH“PER“' "

they're both T TRn e

comfortable with. <@>
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Step 4: Authentication

= Specific details of how authentication should work are
dependent on the EAP method chosen by the
authentication server and supplicant

= Always will result in a EAP-Success or EAP-Failure
message

= Portis set to authorized state if EAP-Success, otherwise
remains unauthorized <@>
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What is EAP?
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Extensible Authentication Protocol (EAP):

It's an authentication framework:
= Not really a protocol, only defines message formats
= |ndividual EAP implementations are called "EAP methods”

= Think of it as a black box for performing authentication
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Notable EAP methods...
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EAP-MD5
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EAP-PEAP
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EAP-TLS
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Brief History of Wired Port Security
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Brief History of Wired Port Security

2001 —

2004 —

the 802.1x-2001 standard is created to provided
rudimentary authentication for LANs

the 802.1x-2004 standard is created as an
extension of 802.1x-2001 to facilitate the use of
802.1x in WLANSs extended 802.1x-2001 for use
in WLAN
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Brief History of Wired Port Security

2005 - Steve Riley demonstrates that 802.1x-
2004 can be bypassed by inserting a hub
between supplicant and authenticator [3]

* |nteraction limited to injecting UDP packets (TCP race
condition)
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Brief History of Wired Port Security

2011 — “Abb” of Gremwell Security creates Marvin:

= Bypasses 802.1x by introducing rogue device directly
between supplicant and switch

= No hub necessary: rogue device configured as a bridge

= Full interaction with network using packet injection
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Brief History of Wired Port Security

2011 — Alva Duckwall’s 802.1x-2004 bypass:

* Transparent bridge used to introduce rogue device
between supplicant and switch

= No packet injection necessary: network interaction granted
by using iptables to source NAT (SNAT) traffic originating
from device

= More on this attack later... <@>
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Brief History of Wired Port Security

2017 — Valérian Legrand creates Fenrir:

= Works similarly to Duckwall’s tool, but implements NATIng

in Python using Scapy (instead of making calls to iptables /
arptables / ebtables)

= Modular design, support for responder, etc...
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Improvements to Bridge-Based Bypass
Techniques
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Let's look at Duckwall’'s 802.1x bypass more
closely...

= Uses transparent bridge to silently introduce rogue device between
supplicant and authenticator

= Network interaction achieved by using iptables to source NAT (SNAT)
traffic originating from device

» Hidden SSH service created on rogue device by forwarding traffic to
the supplicant’s IP address on a specified port to bridge’s IP address A
on port 22 <@>
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Linux kernel will not forward EAPOL packets over a
bridge. Existing tools deal with this problem by
either:

= patching the Linux kernel

= Relying on high level libraries such as Scapy
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Problems with both of these approaches:

= Relying on Kernel patches can become unwieldy: no
publicly available Kernel patches for modern kernel
versions

= Relying on high level tools such as Scapy can make the
bridge slow under heavy loads
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Fortunately, the situation «

66

has dramatically improved -
since Duckwall’s n

72
73

contribution:

os.system('ifconfig %s down' % self.name)
def enable_8021x_forwarding(self):

os.system('echo 8 > /sys/class/net/%s/bridge/group_fwd_mask' % self.name)l
def enable_ip_forwarding(self):

os.system('echo 1 > /proc/sys/net/ipv4/ip_forward")

= as of 2012, EAPOL bridging can be enabled using the proc

file system

» that means no more patching :D
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Improvement: Support for Side Channel Interaction

When Duckwall created his original 802.1x bypass, he had to figure
out how to provide the attacker with access to the rogue device:

= The year was 2011 — cellular modems were unsophisticated, slow,
and expensive

= Solution: create hidden SSH service
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Problems with this approach:
= Relies on assumption that egress filtering can be bypassed

= Relies on pushing traffic through the target network, creating an
opportunity for detection
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Our updated implementation:

= Relies on a side channel
interface to provide
attacker with connectivity

We had to add / modify some
firewall rules to get it to work,
but totally worth it.

100
101
102
103
104
105
106
107
108
109
110
111

[:[solstice@opsll—Z] - [~/silentbridge] - [7528]
[$] ./silentbridge --create-bridge --upstream eno2 --phy enol --egress-port 443'

print '[*] Initiate radio silence...’

# start dark - but make an exception for our side channel
core.firewalls.iptables.allow_outbound(sidechannel, port=egress_port)
core.firewalls.arptables.allow_outbound(sidechannel)
core.firewalls.iptables.drop_all()
core.firewalls.arptables.drop_al]O

time.sleep(2)

print '[*] Bringing the bridge up with a non-routable IP...'

<CO»
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Demo: Improvements to Bridge-Based
Bypass Techniques
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All traditional 802.1x bypasses (hub, injection, or
bridge based) take advantage of the same
fundamental security issues that affect 802.1x-2004:

* The protocol does not provide encryption

* The protocol does not support authentication on a packet-
by-packet basis
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Introduction to MACsec and 802.1x-2010
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These security issues are addressed in 802.1x-
2010, which uses MACsec to provide:

= | ayer 2 encryption performed on a hop-by-hop basis

» Packet-by-packet integrity checks
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Support for hop-by-hop encryption particularly
Important:

* Protects against bridge-based attacks

= Allows network administrators with a means to inspect data
In transit
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The 802.1x-2010 protocol works In three stages:

1. Authentication and Master Key Distribution
2. Session Key Agreement

3. Session Secure
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. £ A\ P-Request-Identity

— = AP-Response |dentity sy @

Authenticator
v I RADIUS Access-Request sy
Authentication Server

= RADIUS Access-Challenge

< . EAP Authentication Using _ _ DS < - . EAP Authentication Using _ | D>
Negotiated EAP Method Negotlated EAP Method

A £ AP-Success / Failure

Stage 1: Authentication (802.1x)
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_ Key Server m————
—— \|ACsecC Capable ﬁ @ /
Authenticator

Authentication Server

_ Key Name, SAK =———
SAK Installed e—-

Stage 2: Session Key Agreement (MKA)
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— Encrypted Data =———
—— Encrypted Data ﬁ @ /
Authenticator

Authentication Server

Stage 3: Session Secure (MACsec)
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Things to think about...

“IEEE Std 802.11 specifies media-dependent cryptographic
methods to protect data transmitted using the 802.11 MAC
over wireless networks. Conceptually these cryptographic
methods can be considered as playing the same role within
systems and interface stacks as a MAC Security Entity.” —
IEEE 802.1x-2010 Standard — Section 6.6
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Parallels between MACsec and WPA
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2003 — WPAT1 is released

Hop-by-hop Layer 2 Encryption:
= access point to station
Authentication provided by:

= Extensible Authentication Protocol (EAP)

= Pre-Shared Key (as a fallback / alternative)
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Shift of focus due to WPA

Injection-based Attacks no longer possible due to Layer 2
encryption

Focus shifts to attacking authentication mechanism

» Pre-Shared Key (PSK) — WPA Handshake Capture and Dictionary
Attack

= EAP — Rogue AP attacks against weak EAP methods

EEEEEEEEEEEEEE



2010 — 802.1x-2010 is released

Hop-by-hop Layer 2 Encryption using MACsec:

= device to switch / switch to switch

Authentication provided by:
= Extensible Authentication Protocol (EAP)

= Pre-Shared Key (as a fallback / alternative)
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Shift of focus due to MACsec

Bridge and injection-based attacks no longer possible due to
Layer 2 encryption

First thing that comes to mind: try attacking the authentication
mechanism:

= Pre-Shared Key (PSK) — some kind of dictionary attack??? (still

working on that)

AN
= EAP — attacks against weak EAP methods (main takeaway of this te@>

Vv
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Attacks Against WPA2-EAP
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Core Stages of EAP-PEAP
(Forwarded Between Authentication Server and Supplicant by Authenticator)

e A uthentication Requestﬁ

_X.SOQ Certificate pu——

Secure Tunnel Established

_ Inner Authentication through secure tunnel ﬁ

Supplicant Authentication Server
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EAP-PEAP: Security Issues

Brad Antoniewicz and Josh Wright in 2008:

= attacker can use a rogue access point attack to force the supplicant
to authenticate with a rogue authentication server
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<< ‘ >> “HackWest Open”, Channel 6

Rogue Access Point:
( ) “HackWest Open”, Channel 6



EAP-PEAP: Security Issues

Brad Antoniewicz and Josh Wright in 2008:

= So long as the supplicant accepts the certificate presented by the
attacker’s authentication server, the supplicant will transmit an EAP
challenge and response to the attacker

= can be cracked to obtain a plaintext username and password
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EAP-PEAP: Security Issues

MS-CHAPV2 is the strongest Inner Authentication protocol
available for use with EAP-PEAP and EAP-TTLS:

= vulnerable to a cryptographic weakness discovered by Moxie
Marlinspike and David Hulton in 2012

= MS-CHAPvVZ2 challenge and response can be reduced to a single 56-
bits of DES encryption

= The 56-bits can be converted into a password-equivalent NT hash
within 24 hours with a 100% success rate using FPGA-based <@>
hardware \4
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Back to 802.1x-2010...
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Most important takeaway about 802.1x-2010 (from
an attacker’s perspective):.

= |t still uses EAP to authenticate devices to the network

= EAP is only as secure as the EAP method used
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Supported EAP methods:

The 802.1x-2010 standard allows any EAP method so long
as it:

= Supports mutual authentication
= Supports derivation of keys that are at least 128 bits in length

= (Generates an MSK of at least 64 octets

Plenty of commonly seen weak EAP methods that meet these
requirements (EAP-PEAP, EAP-TTLS, etc). <@>
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Defeating MACsec Using Rogue
Gateway Attacks
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Goal: Rogue Gateway Attack

* Force the supplicant to authenticate with attacker’s device

= Crack hashes, authenticate with the network

EEEEEEEEEEEEEE



802.1x-2004: MITM style bypass

Authentication Server (RADIUS)

H Rogue Device

' Authenticated 802.1x

Session

Authenticator (Switch)

INTERNAL
NETWORK

Supplicant (Fedora 28 Workstation)




802.1x-2010: Direct Access

Authentication S.erver (RADIUS)

Rogue Device

- Authenticated 802.1x Session

Authenticator (Switch)

INTERNAL
NETWORK
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Let’'s build a rogue device...
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Step 1: Device Core

- o 1

, transparent ,
upstream interface I brizge PHY interface

Intel NUC Running Fedora 28
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Need a way to divert traffic to the rogue
device....
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Mechanical A/B Ethernet Splitters

FRONT BACK A
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Need a way of manipulating the push switch:
» Using relays will lead to impedance issues

= Option B: use solenoids
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Solenoids:

—Induced Field Inside Coil—>

e ANINAN AL NN
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Mode A: Full bypass with passive tap

sidechannel interface

: transparent .
upstream interface briz ge PHY interface

A A

Physical A/B Physical A/B
Splitter Splitter

A/B Splitters in Mode A - Direct physical link between supplicant and authenticator
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Mode B: Link is routed to upstream & PHY interfaces

sidechannel interface

upstream interface tragzzg;ent PHY interface

B B

Physical A/B Physical A/B
Splitter Splitter

A/B Splitters in Mode B: ethernet rerouted to rogue device < @>
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Implementing the attack...
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Step 1: Route supplicant to rogue auth server

INTERNAL
NETWORK

_‘ sidechannel interface I_

’\ 5 =N e

B

Physical A/B ‘ Rogue Auth Sewe,‘ ‘ Physical A/B
Splitter (Hostapd) Splitter

A/B Splitters in Mode B, which routes physical link to rogue device.
All interfaces down except sidechannel and PHY.
Rogue auth server (hostapd) listening on PHY.

%

Vv
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Step 2: Authenticate using stolen EAP credentials

INTERNAL
NETWORK

Sent to authenticator (via upstream):

_‘ sidechannel interface }_

¢ Valid EAP Credentials

» Supplicant's MAC Address
« Supplicant's IP Address (static)
' | upstream interface
. p I

&
vV

Physical A/B Physical A/B

Splitter A/B Splitters in Mode B - Physical Link Rerouted to Rogue Device, SPlitter
all interfaces down except upstream and sidechannel.
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Demo: Defeating MACsec Using Rogue
Gateway Attacks
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-~

root localhost | |/dev/pts/1| |master # Wed 12:01 H0 O~
/home/solstice/silentbridge
solstice@localhost:~ x

b‘ File Edit View Search Terminal Help

.~ 64 bytes from icmp_seq=1280 ttl=119 time=14.9 ms
64 bytes from icmp_seg=1281 ttl=119 time=13.8 ms

Y (64 bytes from icmp_seq=1282 ttl1=119 time=13.7 ms
64 bytes from icmp_seq=1283 ttl=119 time=14.3 ms
.64 bytes from icmp_seq=1284 ttl=119 time=13.5 ms
64 bytes from icmp_seq=1285 ttl=119 time=13.8 ms

64 bytes from icmp_seq=1286 ttl=119 time=13.8 ms
‘64 bytes from icmp_seq=1287 ttl=119 time=15.0 ms
64 bytes from icmp_seq=1288 ttl=119 time=13.4 ms

64 bytes from icmp_seq=1289 ttl=119 time=14.4 ms

64 bytes from icmp_seq=1290 ttl=119 time=13.8 ms

64 bytes from icmp_seq=1291 ttl=119 time=29.3 ms

64 bytes from icmp_seq=1292 ttl=119 time=14.7 ms

[N 64 bytes from icmp_seq=1293 ttl=119 time=23.9 ms
64 bytes from icmp_seq=1294 ttl1=119 time=13.8 ms

H 64 bytes from icmp_seq=1295 ttl=119 time=20.5 ms
./~ 64 bytes from icmp_seq=1296 ttl=119 time=14.4 ms
=64 bytes from icmp_seq=1297 ttl1=119 time=14.2 ms
f Tiryi64 bytes from icmp_seq=1298 ttl=119 time=14.5 ms
© 64 bytes from icmp_seq=1299 ttl=119 time=14.4 ms

BRI . .
. . . . ..

AT L S
o e e .

00 00 00 O 00 00 ©O OO ©0 0O O 00 0O 0O ©0 €0 0 00 00 ©O0 OO ©O 00 0 00 O © ©

4e s s 88 88 a3 ss es e s 88 ss %s se S8 &8 88 88 ss se e6 &5 £ s ss se se es 6

bytes from 8.8. icmp_seq=1300 ttl=119 time=13.5 ms
bytes from 8.8. icmp_seq=1301 ttl=119 time=14.1 ms
bytes from 8. icmp_seq=1302 ttl=119 time=13.5 ms
bytes from 8.8. icmp_seq=1303 ttl=119 time=13.8 ms
bytes from 8. icmp_seq=1304 ttl=119 time=13.5 ms
bytes from 8.8. icmp_seq=1305 ttl1=119 time=13.3 ms
bytes from 8.8.8. icmp_seq=1306 ttl=119 time=14.2 ms
bytes from 8.8. icmp_seq=1307 ttl=119 time=14.3 ms

bytes from icmp_seq=1308 ttl=119 time=14.1 ms

/o W AR .



Quick Detour: MAC Filtering and MAC
Authentication Bypass (MAB)
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Fun fact: not all devices support 802.1x....
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Not all devices support 802.1x:

= Enterprise organizations with 802.1x protected networks
need to deploy them anyways

= Solution: disable 802.1x on the port used by the device —
this is known as a port security exception

= 802.1x usually replaced with MAC filtering or some other
weak form of access control
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Port security exceptions:

= Historically, very prevalent due to widespread lack of
802.1x support by peripheral devices (printers, IP
cameras, etc)

= Low hanging fruit for attackers — much easier than trying
to actually bypass 802.1x using a bridge or hub
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Port security exceptions are slowly
dying....
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Support for 802.1x by peripheral device
manufacturers has increased dramatically:

* | egacy hardware phased out, replaced with 802.1x
capable models
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Port security exceptions:
» Have become less prevalent

= Are not quite the low-hanging fruit that they used to be
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Improved adoption of 802.1x does not imply strong port
security for peripheral devices:

= 802.1x-2010 support not a reality yet for peripheral devices
= 802.1x-2004 can be bypassed using bridges, injections, etc

= Adoption for secure EAP methods can be expected to be
lower than domain joined devices
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What about attacking EAP?
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Makes sense as an alternative to relying on port security
exceptions:

= Adoption of secure EAP methods already low across all
device types

= Adoption of secure EAP methods can be expected to be
lower for peripheral devices
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Rogue Gateway Attack Against 802.1x-
2004
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INTERNAL
NETWORK

4‘ sidechannel interface \7

’—( upstream interface tragﬁzg;ent PHY i@l—

Rogue Auth
|Server (Hostapd)
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INTERNAL
NETWORK

Rogud Auth
|Server (Hostapd)

All interfaces down except sidechannel and PHY.
Rogue auth server (hostapd) listening on PHY.
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EAP-MD5
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EAP-MD5 is widely used to protect peripheral
devices such as printers:

= Easy to setup and configure

= Still better than MAC filtering
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EAP-MD5 (Forwarded Between Authentication Server and Supplicant by Authenticator)

‘— EAP-Request-ldentity ——

E———— EAP-Response-Identity ﬁ

EAP-Challenge-Request
_ challenge_string —

EAP-Challenge-Response
=== response = MD5(id, password, challenge_string) —)

_ Success / Failure messsssssssssssssmmmm—m—"

Supplicant Authentication Server

<

vV
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Entire process occurs over plaintext (bad bad bad bad bad)
Brad Antoniewicz and Josh Wright in 2008:

attacker can capture MD5-Challenge-Request and MD5-Challenge-
Response by passively sniffing traffic

Dictionary attack can be used to obtain a password using captured
data
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Fanbao Liu and Tao Xie in 2012:

= EAP-MD5 credentials can be recovered even more
efficiently using length-recovery attack
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Leveraging what we know about how to attack EAP-MD5 and
802.1x-2004:

1. Use bridge-based approach to place rogue device between supplicant
and authenticator

2. Wait for the supplicant to authenticate, and sniff the EAP-MD5-
Challenge and EAP-MD5-Response when it does

3. Crack credentials, connect to network using Bait n” Switch
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One major drawback to this approach:

= We must wait for the supplicant to reauthenticate with the switch
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Realistically, this will not happen unless supplicant is
unplugged

= disabling a virtual network interface is not enough

= Using mechanical splitters is an option, but the less overhead the
better
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EAP-MD5 Forced Reauthentication
Attack Against 802.1x-2004
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First two steps of the EAP authentication process:
1. (optional) supplicant sends the authenticator an EAPOL-Start frame

2. The authenticator sends the supplicant an EAP-Request-Identity frame
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Problem: supplicant has no way of verifying if incoming EAP-
Request-ldentity frame has been sent in response to an
EAPOL-Start.
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What this means: we can force reauthentication by sending
an EAPOL-Start frame to the authenticator as if it came from
the supplicant (MAC spoofing):

= Result: authenticator will send EAP-Request-ldentity frame to the
actual supplicant, kickstarting the reauthentication process

= Both the authenticator and supplicant believe that the other party has
initiated the reauthentication attempt
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Demo: Forced Reauthentication
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root@solstice: ~ (ssh) 881

Waking up in 1.3 seconds.

Cleaning request 384 ID
Cleaning request 385 I
Cleaning request 386 ID
Cleaning request 387 ID
Cleaning request 388 I
Cleaning request 389 ID
Cleaning request 390 ID
Cleaning request 391 ID
Cleaning request 392 ID
Cleaning request 393 I
Waking up in 2.2 seconds.
Cleaning up request 394 ID
Cleaning request 395 I
Cleaning request 396 ID
Cleaning request 397 ID
Cleaning request 398 ID
Cleaning request 399 ID
Cleaning request 400 ID
Cleaning request 401 ID
Cleaning request 402 I
Cleaning request 403 ID
Ready to process requests.

root@solstice: ~

root@solstice:~# scapy

INFO: Can't import matplotlib. Won't be able to plot.

INFO: Can't import PyX. Won't be able to use psdump() or pdfdump().

WARNING: No route found for IPv6 destination :: (no default route?)

INFO: Can't import python Crypto lib. Won't be able to decrypt WEP.

INFO: Can't import python Crypto lib. Disabled certificate manipulation tools

INFO: Can't import python ecdsa lib. Disabled certificate manipulation tools

Welcome to Scapy (2.3.3)

>>> sendp(Ether(src="a8:60:b6:18:82:38"', dst="01:80:c2:00:00:03")/EAPOL(type=1), iface:"br@")l

88 with
89 with
90 with
91 with
92 with
93 with
94 with
95 with
96 with
97 with

+6161
+6161
+6161
+6161
+6161
+6161
+6162
+6162
+6162
+6162

timestamp
timestamp
timestamp
timestamp
timestamp
timestamp
timestamp
timestamp
timestamp
timestamp

(5]

o

S]

98 with
99 with
100 with
101 with
102 with
103 with
104 with
105 with
106 with
107 with

timestamp +6164
timestamp +6164
timestamp +6164
timestamp +6164
timestamp +6164
timestamp +6164
timestamp +6164
timestamp +6164
timestamp +6164
timestamp +6164

o

o

eth@: STA a8:60:b6:18:82:38 IEEE 802.1X: Sending EAP Packet (identifier 63)

eth@: STA a8:60:b6:18:82:38 IEEE 802.1X: received EAP packet (code=2 id=63 len=43) from STA: EAP Resp

onse-PEAP (25)

eth@: RADIUS Sending RADIUS message to authentication server

eth@: RADIUS Next RADIUS client retransmit in 3 seconds

eth@: RADIUS Received 133 bytes from RADIUS server

eth@: RADIUS Received RADIUS message

eth@: STA a8:60:b6:18:82:38 RADIUS: Received RADIUS packet matched with a pending request, round trip
time 0.00 sec

eth@: STA a8:60:b6:18:82:38 IEEE 802.1X: decapsulated EAP packet (code=1 id=64 len=75) from RADIUS se
rver: EAP-Request-PEAP (25)

eth@: STA a8:60:b6:18:82:38 IEEE 802.1X: Sending EAP Packet (identifier 64)

eth@: STA a8:60:b6:18:82:38 IEEE 802.1X: received EAP packet (code=2 id=64 len=107) from STA: EAP Res
ponse-PEAP (25)

eth@: RADIUS Sending RADIUS message to authentication server

eth@: RADIUS Next RADIUS client retransmit in 3 seconds

eth@: RADIUS Received 149 bytes from RADIUS server

eth@: RADIUS Received RADIUS message

eth@: STA a8:60:b6:18:82:38 RADIUS: Received RADIUS packet matched with a pending request, round trip
time 0.00 sec

eth@: STA a8:60:b6:18:82:38 IEEE 802.1X: decapsulated EAP packet (code=1 id=65 len=91) from RADIUS se
rver: EAP-Request-PEAP (25)

eth@: STA a8:60:b6:18:82:38 IEEE 802.1X: Sending EAP Packet (identifier 65)

eth@: STA a8:60:b6:18:82:38 IEEE 802.1X: received EAP packet (code=2 id=65 len=43) from STA: EAP Resp

onse-PEAP (25)

eth@: RADIUS Sending RADIUS message to authentication server

eth@: RADIUS Next RADIUS client retransmit in 3 seconds

eth@: RADIUS Received 101 bytes from RADIUS server

eth@: RADIUS Received RADIUS message

eth@: STA a8:60:b6:18:82:38 RADIUS: Received RADIUS packet matched with a pending request, round trip
time 0.00 sec

eth@: STA a8:60:b6:18:82:38 IEEE 802.1X: decapsulated EAP packet (code=1 id=66 len=43) from RADIUS se
rver: EAP-Request-PEAP (25)

eth@: STA a8:60:b6:18:82:38 IEEE 802.1X: Sending EAP Packet (identifier 66)

eth@: STA a8:60:b6:18:82:38 IEEE 802.1X: received EAP packet (code=2 id=66 len=43) from STA: EAP Resp

onse-PEAP (25)

eth@: RADIUS Sending RADIUS message to authentication server

eth@: RADIUS Next RADIUS client retransmit in 3 seconds

eth@: RADIUS Received 169 bytes from RADIUS server

eth@: RADIUS Received RADIUS message

eth@: STA a8:60:b6:18:82:38 RADIUS: Received RADIUS packet matched with a pending request, round trip
time 0.00 sec

eth@: STA a8:60:b6:18:82:38 IEEE 802.1X:
cept 'testing'

eth@: STA a8:60:b6:18:82:38 IEEE 802.1X:

ver: EAP Success

eth@: STA a8:60:b6:18:82:38 IEEE 802.1X:
eth@: STA a8:60:b6:18:82:38 IEEE 802.1X:
eth@: STA a8:60:b6:18:82:38 IEEE 802.1X:

Sending EAP Packet (identifier 66)
authorizing port
authenticated - EAP type: 25 (PEAP)

AN

old identity 'testing' updated with User-Name from Access-Ac ’

decapsulated EAP packet (code=3 id=66 len=4) from RADIUS ser \
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EAP-MD5 Forced Reauthentication Attack:

1. Introduce rogue device into the network between authenticator and
supplicant

2. Start transparent bridge and passively sniff traffic

3. Force reauthentication by sending spoofed EAPOL-Start frame to
the authenticator

4. Captured and crack EAP-MD5-Challenge and EAP-MD5-
Response
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Demo: EAP-MD5 Forced
Reauthentication Attack
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ot@localhost / /silentbridge (ssh)

../silentbridge (ssh) 81

root@localhost| [/dev/pts/7| [master %
/home/solstice/silentbridge

genis: -
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Proposed Mitigation — safety-bit in the EAP-Request-ldentity
frame:

= setto 1 when the frame was sent in response to an EAPOL-Start frame
= Checked when supplicant receives an EAP-Request-ldentity frame

= Authentication process aborted if safety bit set to 1 and supplicant did
not recently issue EAPOL-Start frame
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Closing Thoughts

EEEEEEEEEEEEEE



Closing Thoughts

Our contributions:

Rogue Gateway and Bait n Switch — Bypass 802.1x-2010 by attacking
its authentication mechanism

Updated & improved existing 802.1x-2004 bypass techniques

EAP-MDS5 Forced Reauthentication attack — improved attack against
EAP-MD5 on wired networks
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Closing Thoughts

Key takeaways (1 of 2):
= Port security is still a positive thing (keep using it!)

= Port security is not a substitute for a layered approach to network
security (i.e. deploying 802.1x does not absolve you from patch
management responsibilities)
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Closing Thoughts

Key takeaways (2 of 2):

= Benefits provided by 802.1x can be undermined due to continued use
of EAP as authentication mechanism

= [mproved 802.1x support by peripheral device manufacturers largely
undermined by lack of support for 802.1x-2010 and low adoptions /
support rates for strong EAP methods

EEEEEEEEEEEEEE



Blog post & whitepaper:
https://www.digitalsilence.com/blog/

Tool:
github.com/s0Ist1c3/silentbridge
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https://www.digitalsilence.com/blog/
https://github.com/s0lst1c3/silentbridge
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